Part Number Hot Search : 
A143E M65A3 2W10G 2SD1113 TC3588 82553350 2SK1549 003900
Product Description
Full Text Search
 

To Download MJE13005-D Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  switchmode  series npn silicon power transistors these devices are designed for highvoltage, highspeed power switching inductive circuits where fall time is critical. they are particularly suited for 115 and 220 v switchmode applications such as switching regulator's, inverters, motor controls, solenoid/relay drivers and deflection circuits. specification features: ? v ceo(sus) 400 v ? reverse bias soa with inductive loads @ t c = 100  c ? inductive switching matrix 2 to 4 amp, 25 and 100  c t c @ 3a, 100  c is 180 ns (typ) ? 700 v blocking capability ? soa and switching applications information. ????????????????????????????????? ????????????????????????????????? maximum ratings ????????????????? ????????????????? rating ??????? ??????? symbol ???????? ???????? value ???? ???? unit ????????????????? ????????????????? collectoremitter voltage ??????? ??????? v ceo(sus) ???????? ???????? 400 ???? ???? vdc ????????????????? ????????????????? collectoremitter voltage ??????? ??????? v cev ???????? ???????? 700 ???? ???? vdc ????????????????? ????????????????? emitter base voltage ??????? ??????? v ebo ???????? ???????? 9 ???? ???? vdc ????????????????? ? ??????????????? ? ????????????????? collector current e continuous e peak (1) ??????? ? ????? ? ??????? i c i cm ???????? ? ?????? ? ???????? 4 8 ???? ? ?? ? ???? adc ????????????????? ? ??????????????? ? ????????????????? base current e continuous e peak (1) ??????? ? ????? ? ??????? i b i bm ???????? ? ?????? ? ???????? 2 4 ???? ? ?? ? ???? adc ????????????????? ? ??????????????? ? ????????????????? emitter current e continuous e peak (1) ??????? ? ????? ? ??????? i e i em ???????? ? ?????? ? ???????? 6 12 ???? ? ?? ? ???? adc ????????????????? ? ??????????????? ? ????????????????? total power dissipation @ t a = 25  c derate above 25  c ??????? ? ????? ? ??????? p d ???????? ? ?????? ? ???????? 2 16 ???? ? ?? ? ???? watts mw/  c ????????????????? ????????????????? total power dissipation @ t c = 25  c derate above 25  c ??????? ??????? p d ???????? ???????? 75 600 ???? ???? watts mw/  c ????????????????? ????????????????? operating and storage junction temperature range ??????? ??????? t j , t stg ???????? ???????? 65 to +150 ???? ????  c ????????????????????????????????? ????????????????????????????????? thermal characteristics ????????????????? ????????????????? characteristic ??????? ??????? symbol ???????? ???????? max ???? ???? unit ????????????????? ????????????????? thermal resistance, junction to ambient ??????? ??????? r q ja ???????? ???????? 62.5 ???? ????  c/w ????????????????? ????????????????? thermal resistance, junction to case ??????? ??????? r q jc ???????? ???????? 1.67 ???? ????  c/w ????????????????? ? ??????????????? ? ????????????????? maximum lead temperature for soldering purposes: 1/8 from case for 5 seconds ??????? ? ????? ? ??????? t l ???????? ? ?????? ? ???????? 275 ???? ? ?? ? ????  c (1) pulse test: pulse width = 5 ms, duty cycle  10%. on semiconductor  ? semiconductor components industries, llc, 2002 april, 2002 rev. 6 1 publication order number: mje13005/d mje13005 4 ampere npn silicon power transistor 400 volts 75 watts *on semiconductor preferred device * case 221a09 to220ab style 1: pin 1. base 2. collector 3. emitter 4. collector 1 2 3 4
mje13005 http://onsemi.com 2 ????????????????????????????????? ????????????????????????????????? electrical characteristics (t c = 25  c unless otherwise noted) ??????????????????? ??????????????????? characteristic ????? ????? symbol ???? ???? min ??? ??? typ ???? ???? max ??? ??? unit ????????????????????????????????? ????????????????????????????????? *off characteristics ??????????????????? ? ????????????????? ? ??????????????????? collectoremitter sustaining voltage (i c = 10 ma, i b = 0) ????? ? ??? ? ????? v ceo(sus) ???? ? ?? ? ???? 400 ??? ? ? ? ??? e ???? ? ?? ? ???? e ??? ? ? ? ??? vdc ??????????????????? ? ????????????????? ? ??????????????????? collector cutoff current (v cev = rated value, v be(off) = 1.5 vdc) (v cev = rated value, v be(off) = 1.5 vdc, t c = 100  c) ????? ? ??? ? ????? i cev ???? ? ?? ? ???? e e ??? ? ? ? ??? e e ???? ? ?? ? ???? 1 5 ??? ? ? ? ??? madc ??????????????????? ? ????????????????? ? ??????????????????? emitter cutoff current (v eb = 9 vdc, i c = 0) ????? ? ??? ? ????? i ebo ???? ? ?? ? ???? e ??? ? ? ? ??? e ???? ? ?? ? ???? 1 ??? ? ? ? ??? madc ????????????????????????????????? ????????????????????????????????? second breakdown ??????????????????? ??????????????????? second breakdown collector current with base forward biased ????? ????? i s/b ???? ???? ???????? ???????? see figure 11 ??????????????????? ??????????????????? clamped inductive soa with base reverse biased ????? ????? rbsoa ???? ???? ???????? ???????? see figure 12 ????????????????????????????????? ????????????????????????????????? *on characteristics ??????????????????? ? ????????????????? ? ??????????????????? dc current gain (i c = 1 adc, v ce = 5 vdc) (i c = 2 adc, v ce = 5 vdc) ????? ? ??? ? ????? h fe ???? ? ?? ? ???? 10 8 ??? ? ? ? ??? e e ???? ? ?? ? ???? 60 40 ??? ? ? ? ??? e ??????????????????? ? ????????????????? ? ? ????????????????? ? ? ????????????????? ? ??????????????????? collectoremitter saturation voltage (i c = 1 adc, i b = 0.2 adc) (i c = 2 adc, i b = 0.5 adc) (i c = 4 adc, i b = 1 adc) (i c = 2 adc, i b = 0.5 adc, t c = 100  c) ????? ? ??? ? ? ??? ? ? ??? ? ????? v ce(sat) ???? ? ?? ? ? ?? ? ? ?? ? ???? e e e e ??? ? ? ? ? ? ? ? ? ? ??? e e e e ???? ? ?? ? ? ?? ? ? ?? ? ???? 0.5 0.6 1 1 ??? ? ? ? ? ? ? ? ? ? ??? vdc ??????????????????? ? ????????????????? ? ? ????????????????? ? ??????????????????? baseemitter saturation voltage (i c = 1 adc, i b = 0.2 adc) (i c = 2 adc, i b = 0.5 adc) (i c = 2 adc, i b = 0.5 adc, t c = 100  c) ????? ? ??? ? ? ??? ? ????? v be(sat) ???? ? ?? ? ? ?? ? ???? e e e ??? ? ? ? ? ? ? ??? e e e ???? ? ?? ? ? ?? ? ???? 1.2 1.6 1.5 ??? ? ? ? ? ? ? ??? vdc ????????????????????????????????? ????????????????????????????????? dynamic characteristics ??????????????????? ? ????????????????? ? ??????????????????? currentgain e bandwidth product (i c = 500 madc, v ce = 10 vdc, f = 1 mhz) ????? ? ??? ? ????? f t ???? ? ?? ? ???? 4 ??? ? ? ? ??? e ???? ? ?? ? ???? e ??? ? ? ? ??? mhz ??????????????????? ??????????????????? output capacitance (v cb = 10 vdc, i e = 0, f = 0.1 mhz) ????? ????? c ob ???? ???? e ??? ??? 65 ???? ???? e ??? ??? pf ????????????????????????????????? ????????????????????????????????? switching characteristics ????????????????????????????????? ????????????????????????????????? resistive load (table 2) ???????? ???????? delay time ???????????? ???????????? ????? ????? t d ???? ???? e ??? ??? 0.025 ???? ???? 0.1 ??? ??? m s ???????? ???????? rise time ???????????? ???????????? (v cc = 125 vdc, i c = 2 a, i b1 =i b2 =04a t =25 m s ????? ????? t r ???? ???? e ??? ??? 0.3 ???? ???? 0.7 ??? ??? m s ???????? ???????? storage time ???????????? ???????????? i b1 = i b2 = 0.4 a, t p = 25 m s, duty cycle  1%) ????? ????? t s ???? ???? e ??? ??? 1.7 ???? ???? 4 ??? ??? m s ???????? ???????? fall time ???????????? ???????????? duty cycle  1%) ????? ????? t f ???? ???? e ??? ??? 0.4 ???? ???? 0.9 ??? ??? m s ????????????????????????????????? ????????????????????????????????? inductive load, clamped (table 2, figure 13) ???????? ???????? voltage storage time ???????????? ???????????? (i 2 a v 300 vd ????? ????? t sv ???? ???? e ??? ??? 0.9 ???? ???? 4 ??? ??? m s ???????? ???????? crossover time ???????????? ???????????? (i c = 2 a, v clamp = 300 vdc, i b1 = 0.4 a , v be(off) = 5 vdc , t c = 100  c ) ????? ????? t c ???? ???? e ??? ??? 0.32 ???? ???? 0.9 ??? ??? m s ???????? ???????? fall time ???????????? ???????????? i b1 = 0 . 4 a , v be( o ff) = 5 vdc , t c = 100 c) ????? ????? t fi ???? ???? e ??? ??? 0.16 ???? ???? e ??? ??? m s *pulse test: pulse width = 300 m s, duty cycle = 2%.
mje13005 http://onsemi.com 3 c, capacitance (pf) v ce(sat) , collector-emitter saturation voltage (volts) v be , base-emitter voltage (volts) v ce , collector-emitter voltage (volts ) i c , collector current (amp) i c , collector current (amp) 1.1 1.3 0.7 0.3 figure 1. dc current gain i c , collector current (amp) 0.1 0.4 2 4 10 figure 2. collector saturation region 0.03 i b , base current (amp) 0.3 0.05 1.2 0.4 0 100 h fe , dc current gain 0.1 0.2 0.5 3 figure 3. baseemitter voltage figure 4. collectoremitter saturation voltage figure 5. collector cutoff region 2 0.8 0.1 v be , base-emitter voltage (volts) 0 t j = 25 c 0.2 1 figure 6. capacitance 2 k v r , reverse voltage (volts) c ib c ob 0.3 , collector current (a) m i c -0.4 -0.2 70 50 300 1.6 0.5 i c = 1 a t j = -55 c 5 0.04 0.6 0.06 0.1 1 0.04 0.4 0.2 0.6 70 50 30 7 300 200 100 20 30 100 50 5 1 0.5 150 c i c /i b = 4 +0.6 2 a 0.7 1 2 0.9 0.35 0.55 0.25 0.05 0.45 0.06 v ce = 2 v v ce = 5 v t j = 150 c 25 c -55 c 2 0.15 +0.4 +0.2 1 10 100 1 k 10 k 500 700 1 k 10 30 reverse forward v ce = 250 v v be(sat) @ i c /i b = 4 v be(on) @ v ce = 2 v 20 3 a 4 a 4 25 c 25 c 0.06 0.1 1 0.04 0.4 0.2 0.6 2 4 3 t j = -55 c 25 c 150 c t j = 150 c 125 c 100 c 75 c 50 c 25 c
mje13005 http://onsemi.com 4 t rv time i c v ce 90% i b1 t sv i cpk v clamp 90% v clamp 90% i c 10% v clamp 10% i cpk 2% i c i b t fi t ti t c figure 7. inductive switching measurements table 1. typical inductive switching performance ???? ? ?? ? ???? i c amp ??? ? ? ? ??? t c  c ??? ? ? ? ??? t sv ns ??? ? ? ? ??? t rv ns ??? ? ? ? ??? t fi ns ??? ? ? ? ??? t ti ns ???? ? ?? ? ???? t c ns ???? ? ?? ? ???? 2 ??? ? ? ? ??? 25 100 ??? ? ? ? ??? 600 900 ??? ? ? ? ??? 70 110 ??? ? ? ? ??? 100 240 ??? ? ? ? ??? 80 130 ???? ? ?? ? ???? 180 320 ???? ???? 3 ??? ??? 25 100 ??? ??? 650 950 ??? ??? 60 100 ??? ??? 140 330 ??? ??? 60 100 ???? ???? 200 350 ???? ? ?? ? ???? 4 ??? ? ? ? ??? 25 100 ??? ? ? ? ??? 550 850 ??? ? ? ? ??? 70 110 ??? ? ? ? ??? 160 350 ??? ? ? ? ??? 100 160 ???? ? ?? ? ???? 220 390 note: all data recorded in the inductive switching circuit in table 2. switching times note in resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. however, for inductive loads which are common to switchmode power supplies and hammer drivers, current and voltage waveforms are not in phase. therefore, separate measurements must be made on each waveform to determine the total switching time. for this reason, the following new terms have been defined. t sv = voltage storage time, 90% i b1 to 10% v clamp t rv = voltage rise time, 1090% v clamp t fi = current fall time, 9010% i c t ti = current tail, 102% i c t c = crossover time, 10% v clamp to 10% i c an enlarged portion of the inductive switching waveforms is shown in figure 7 to aid in the visual identity of these terms. for the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from an222: p swt = 1/2 v cc i c (t c )f in general, t rv + t fi  t c . however, at lower test currents this relationship may not be valid. as is common with most switching transistors, resistive switching is specified at 25 c and has become a benchmark for designers. however, for designers of high frequency converter circuits, the user oriented specifications which make this a aswitchmodeo transistor are the inductive switching speeds (t c and t sv ) which are guaranteed at 100  c. t, time (s) m t, time (s) m figure 8. turnon time i c , collector current (amp) t r t d @ v be(off) = 5 v 0.02 0.01 1 0.5 0.2 i c , collector current (amp) 0.4 4 12 0.04 v cc = 125 v i c /i b = 5 t j = 25 c 0.2 0.05 0.1 0.1 figure 9. turnoff time 0.2 0.1 10 5 1 0.5 4 12 0.04 v cc = 125 v i c /i b = 5 t j = 25 c 0.2 0.3 0.5 0.1 2 t s t f resistive switching performance
mje13005 http://onsemi.com 5 reverse bias safe operating area and inductive switching resistive switching output waveforms test circuits circuit values test waveforms note pw and v cc adjusted for desired i c r b adjusted for desired i b1 5 v p w duty cycle 10% t r , t f 10 ns 68 1 k 0.001 m f 0.02 m f 1n493 3 270 +5 v 1 k 2n2905 47 1/2 w 100 -v be(off) mje200 t.u.t. i b r b 1n4933 1n4933 33 33 2n222 2 1 k mje210 v cc +5 v l i c mr826* v clamp *selected for 1 kv v ce 5.1 k 51 +125 v r c scope -4.0 v d1 r b tut t 1 adjusted to obtain i c t 1 l coil (i c pk ) v cc t 2 l coil (i c pk ) v clamp +10 v 25 m s 0 -8 v coil data: ferroxcube core #6656 full bobbin (~16 turns) #16 gap for 200 m h/20 a l coil = 200 m h v cc = 20 v v clamp = 300 vdc v cc = 125 v r c = 62 w d1 = 1n5820 or equiv. r b = 22 w test equipment scopetektronics 475 or equivalent t r , t f < 10 ns duty cycle = 1.0% r b and r c adjusted for desired i b and i c t 1 i c v ce time i c(pk) v ce or v clamp t 2 t t t f t f clamped t f unclamped t 2 table 2. test conditions for dynamic performance t, time (ms) 1 0.01 0.01 0.7 0.2 0.1 0.05 0.02 r(t), transient thermal resistance 0.05 1 2 5 10 20 50 100 200 500 z q jc(t) = r(t) r q jc r q jc = 1.67 c/w max d curves apply for power pulse train shown read time at t 1 t j(pk) - t c = p (pk) z q jc(t) p (pk) t 1 t 2 duty cycle, d = t 1 /t 2 d = 0.5 0.2 0.05 0.01 single pulse 0.1 0.5 0.2 (normalized) 1 k 0.5 0.3 0.07 0.03 0.02 figure 10. typical thermal response [z q jc (t)] 0.1 0.02
mje13005 http://onsemi.com 6 safe operating area information the safe operating area figures 11 and 12 are specified ratings for these devices under the test conditions shown. i c(pk) , collector current (amp) i c , collector current (amp) 5 ms 500 m s 1 ms dc 10 7 v ce , collector-emitter voltage (volts) 0.02 10 400 2 1 5 0.5 0.1 0.05 30 50 70 100 figure 11. forward bias safe operating area figure 12. reverse bias switching safe operating area 0.2 0.01 300 500 mje13005 520 4 0 800 1 100 300 t c 100 c i b1 = 2.0 a 500 700 v be(off) = 9 v 0 2 v ce , collector-emitter clamp voltage (volts) 3 200 400 600 5 v mje13005 3 v 200 1.5 v forward bias there are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. safe operating area curves indicate i c v ce limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. the data of figure 11 is based on t c = 25  c; t j(pk) is variable depending on power level. second breakdown pulse limits are valid for duty cycles to 10% but must be derated when t c 25  c. second breakdown limitations do not derate the same as thermal limitations. allowable current at the voltages shown on figure 11 may be found at any case temperature by using the appropriate curve on figure 13. t j(pk) may be calculated from the data in figure 10. at high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. reverse bias for inductive loads, high voltage and high current must be sustained simultaneously during turnoff, in most cases, with the base to emitter junction reverse biased. under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. this can be accomplished by several means such as active clamping, rc snubbing, load line shaping, etc. the safe level for these devices is specified as reverse bias safe operating area and represents the voltagecurrent conditions during reverse biased turnoff. this rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. figure 12 gives the complete rbsoa characteristics. figure 13. forward bias power derating t c , case temperature ( c) 0 40 120 160 0.6 power derating factor second breakdown derating 1 0.8 0.4 0.2 60 100 140 80 thermal derating 20
mje13005 http://onsemi.com 7 package dimensions case 221a09 issue aa to220ab notes: 1. dimensioning and tolerancing per ansi y14.5m, 1982. 2. controlling dimension: inch. 3. dimension z defines a zone where all body and lead irregularities are allowed. dim min max min max millimeters inches a 0.570 0.620 14.48 15.75 b 0.380 0.405 9.66 10.28 c 0.160 0.190 4.07 4.82 d 0.025 0.035 0.64 0.88 f 0.142 0.147 3.61 3.73 g 0.095 0.105 2.42 2.66 h 0.110 0.155 2.80 3.93 j 0.018 0.025 0.46 0.64 k 0.500 0.562 12.70 14.27 l 0.045 0.060 1.15 1.52 n 0.190 0.210 4.83 5.33 q 0.100 0.120 2.54 3.04 r 0.080 0.110 2.04 2.79 s 0.045 0.055 1.15 1.39 t 0.235 0.255 5.97 6.47 u 0.000 0.050 0.00 1.27 v 0.045 --- 1.15 --- z --- 0.080 --- 2.04 b q h z l v g n a k f 123 4 d seating plane t c s t u r j style 1: pin 1. base 2. collector 3. emitter 4. collector
mje13005 http://onsemi.com 8 on semiconductor and are registered trademarks of semiconductor components industries, llc (scillc). scillc reserves the right to mak e changes without further notice to any products herein. scillc makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does scillc assume any liability arising out of the application or use of any product or circuit, and s pecifically disclaims any and all liability, including without limitation special, consequential or incidental damages. atypicalo parameters which may be provided in scillc data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. all operating parameters, including atypicalso must be validated for each customer application by customer's technical experts. scillc does not convey any license under its patent rights nor the rights of others. scillc products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body , or other applications intended to support or sustain life, or for any other application in which the failure of the scillc product could create a sit uation where personal injury or death may occur. should buyer purchase or use scillc products for any such unintended or unauthorized application, buyer shall indem nify and hold scillc and its of ficers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and re asonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized u se, even if such claim alleges that scillc was negligent regarding the design or manufacture of the part. scillc is an equal opportunity/affirmative action employ er. publication ordering information japan : on semiconductor, japan customer focus center 4321 nishigotanda, shinagawaku, tokyo, japan 1410031 phone : 81357402700 email : r14525@onsemi.com on semiconductor website : http://onsemi.com for additional information, please contact your local sales representative. mje13005/d switchmode is a trademark of semiconductor components industries, llc. literature fulfillment : literature distribution center for on semiconductor p.o. box 5163, denver, colorado 80217 usa phone : 3036752175 or 8003443860 toll free usa/canada fax : 3036752176 or 8003443867 toll free usa/canada email : onlit@hibbertco.com n. american technical support : 8002829855 toll free usa/canada


▲Up To Search▲   

 
Price & Availability of MJE13005-D

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X